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ABSTRACT: A theoretical investigation of the propa-
gation of a detonation wave is made. The problem of
the occurrence of detonation in a nonuniformly heated
gas capable of a chemical reaction is solved numeri-
cally. The three reaction flow conditions possible
are developed.

Gas detonation waves usually are investigated in pipes, and the detona-
tion is initiated by a shock wave, or by an accelerating flame. The initial
temperature of the combustible mixture is close to ambient. The fact of the
formation of a detonation wave in these experiments can be readily established
by the rapid change in pressure, or temperature. As is known, the rate at
which the chemical change takes place in the detonation mode is accelerated

many times.

The situation is different during the operation of an internal combustion
engine, when so-called "knocking" takes place. Because of the preliminary
compression of the combustible gas, and its mixing with the products of com-
bustion remaining from the preceding cycle, the temperature of the gas in
the cylinder can become so high that conditions become favorable for an
explosive—liké volumetric flow of the chemical reaction. If temperature
conditions, and the conditions under which the mixing occurs are identical
throughout the cylinder volume, the chemical reaction causes a uniform rise
in pressure throughout the volume. But if the temperature of the combustible
mixture is different at different points in the volume, the reaction at these
points will not be identical, and nonuniform expansion of the gas will

result. The consequence is possible formation of shock and detonation waves.,

*  Numbers ih the margin indicated pagination in the foreign text.
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As distinguished from classic investigations of detonations in pipes, the
recording of the transition from a condition in which the explosive-~like
flow is uniform to one of a propagating detonation wave is a difficult

experimental task, and requires precise measurements.

This paper is devoted to a theoretical investigation of this question.
The problem of the occurrence of detonation in a nonuniformly heated gas
capable of a chemical reaction is solved numerically. It is shown that
three reaction flow conditions are possible. If the temperature distribu-
tion specified at the initial moment in time is such that the gas is heated
almost uniformly, the reaction will take place in the thermal explosion
mode. When the initial temperature profile is very steep, a shock wave
occurs and breaks away from the reaction wave, Finally, there exists that
distribution of temperature such that the forming shock wave is capable of

causing a reaction, and a steady-state detonation mode occurs.

1. Statement of the problem. Let there be given a temperature profile

for a gas capable of reacting and filling a half-space X > O, in the form
of the following linear function at the initial moment in time

[T0, X)=Ty—xX ' (1.1)

Moreover, gas pressure, P, and the relative concentration of the com-

bustible component, a, are constants, while the gas is at rest, that is

! ’ _ T = 1
TP 0=P, U0 D=0 a0 X=1 .

where U(t, X) is the gas velocity.

In order to satisfy the condition T(t, X) 20 (0 € t < ®), we will say
that T(0, X) = O when X > To/u° If only the initial stage of development
of the disturbances is of interest (and this is sufficient, as we will see
from what follows), the latter requirement is not restrictive because of the

finiteness of the rate at which the disturbances are propagated,

The gas will be assumed perfect; that is, the equation of state is in
the form

(1.3)



Here R is the gas constant, and V is the specific volume for the gas.

From the way in which the problem is stated, we see that the specified Z?7
original state is steady for a perfect, non-reacting gas. Accordingly, the
gas will change its original state only because of the initiating chemical
" reaction. Gas motion within the vessel should occur. Since the reaction will
develop with greater intensity at the hot wall, the gas will expand at that
wall, and the formation of a shock wave is bossible. Given predetermined

conditions, this wave can become a detonation wave.

There are various conditions possible for the course of the chemical

reaction, depending on the original, specified, temperature gradient.

In the case of large #, the forming shock wave will be weak because the
characteristic time for the development of the chemical reaction increases
sharply with distance from the hot wall, and by the time the reaction reaches

that wall the shock wave has long. since escaped from the wall.

In the case of a reduction in #, the induction time is reduced,; and the .
gas layers further away from the hot wall begin to play a role in the forma-
tion of the shock wave. The shock wave gets stronger, the result of the
energy release'in these layers. It should be expected that there are also
# at which the intensity of the shock wave will be sufficient to initiate
a reaction in the gas. In such case the reaction will?occur in the detona-

tion mode.

In the case of small # (almost uniform heating of the gas) the reaction

will run its course throughout the vessel and no shocks will form.

2. Equations and boundary conditions. The investigation of gas motion

will begin with one-dimensional equations of gas dynamics, with the energy
release resulting from the chemical reaction taken into consideration (a

reaction of the first order with respect to a is taken for purposes of

simplicity)| & 'M' LU e
+ =0 ( "V') +U ax ,. P —T"
L +v 2 4 yP 2L L (y 1) Qapheti B, A-"i“—-j-'
K ' L e (2.1)
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Here Q is the energy release, E is the activation energy, k is a pre-~

exponential factor, and Y is the adiabatic exponent.

It will be convenient, for the subsequent investigation, to shift to
the Lagrangian coordinate, x, and to dimensionless variables, through the

following’formulas

P S

fpﬁpwﬁvT#T&yav=Vﬂww,

; (2.2)
The equations of motion at (2.1) will take the form
i,‘_l_‘ e +P a,, = 66 6xXp- [B(i"'%)] ;';'n"' o (;l ' (2.‘3)‘
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Once Eq. (2.2) has been transformed, the original conditions, Egs.
(1.1) and (1.2), and the equation of state, Eq. (1.3) will be in the form

e, ) = 00, B =1 —AY), v(0, =00, 2)
!g(o z)—-'h"(ﬂ-e"), PO D=1, a0 =1, u(0, z)=o,
Y AR N pv——@ ' ' ‘ ‘

Let us point out that 1f the funct1on T(O, X) is extended evenly in

[,

the region X < 0, the gtatement of the problem can be considered a Cauchy

problem.

3. The electronic computer cogyutational'scheme. The problem in the

final section of the X axis must be considered in order to carry out the
numerical integration of the system of Eq. (2.3} with original conditions

(2.4)"
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of Eq. (2.4). Let us introduce a wall with X=L. The boundary conditions
(the condition for the 1mpenetrab111ty of Walls) qan be written

u (%, 0) = u(x, z(o))—O (3.1)
1 kL E
m‘—T —2E0), g0 —
z ]!l (i Mo)p Eo V']'RT exp( RTO)

The boundary cond1t10n at a cold wall here 1ntroduced and necessary
in order to limit the region inﬁ “the equatlons are integrated, has no
effect on the course of the reaction because we are interested in a period
of time that is shorter than the p?f‘iod of time over which the forming shock

wave reaches the right boundary.

The formation of shocks should be expected in the course of solving
the problem, so, following Neuman and Richtmayer [1], let us infroduce
artificial viscosgity in order to replace the shocks with a thin transition
layer in which the magnitudes will change rapidly, but without a discontinuity.
The introduction of artificial viscosity avoids the complex computat1on for .
shocks using Hugoniot equations. Artificial viscosity will be introduced
through the following formula

e e O — e —— e Ot

]

! q‘;v(vAz)' (—a-;) npu <0'q=-0 npn o’ )0 X (3.2)

where Ax is a step along the space coordlnate, is the coefficient of

artificial viscosity.

And the first two expressions of Eq. (2.3) can be replaced by the

R e S T

7 01 + 3z dz (pt+a9)=0 (3-3)

The following explicit aigorithm for solving the problem is not
difficult to obtain when the "tripod" type difference scheme [2] is taken




Here the value of the function cp at time (A

at point in space jAx is designated by (pjne The time step (A'l')n is selected
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on the basis of the Courant stability condition (it ensures that no increase

will take Aplace in the tiny errors that arise during the computatidn)
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(3.5)

The boundary and initial values of the magnitudes can be computed by

using the following schemes:

(a) boundary condit;.ons

o, =a} ™ (1 + (8%),4f OF I
‘oﬂ =l 1+ (At)n-li (B: —101_1
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Discussion of the results. The following vah;es for the dimension-:
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less parameters included in the problem were selected for the computation:

v=1.7,J=350,a=5,5=10,Y=1.2,5(0)255.

Henceforth, the results will be illustrated in physical variables for

k = 10°° sec”?, T_ = 2000°K (L = 10 cm'in this case).

.;ign Moreover, we choose kl = 0.66

(n, = 7360 °/cm), A, = 0.02 (, = 220),
U tao0 ' - . -
& _ i >‘3 = 0.0107 (n.3 = 118), xl* = 0.01 (n,h =
oo 4 - 110), 7\5 = 0.001 (n5 =11).

gg'». -
o0

"y,

ture distribution for these # values

;;‘ S 27 T 7 in physical variables.,
‘ .‘;/Qfl"'f R ;
. o o . : First off, we will consider the
Figure 1

case of large initial temperature
gradients KAI = 0.66). Figures 2 a, b, ¢ and d show the distribution of
the magnitudes a, py, 6 and u with respect to the coordinate. Curves i, 2,

3, &, and 5 correspond to moments in time T = 0.A4l, 0.82, 1.22, 2.44, 3.93.

When T = O.41 the reaction wave and the shock wave coincide (Figure 2
a and b). At succeeding moments in time the distance between the shock
wave and the reaction wave increases at an ever-increasing rate and the

shockiwave breaks away from the reaction wave.
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Figurés 2 a and b,

Figure 2b shows that the pressure behind the shock wave front pulsates,

and that the pulsations with slight amplitude (ripples) can be separated

Figure 1 shows the initial tempera-;
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from the large~scale pulsations

‘that are acoustic disturbances

propagating behind the shock wave

7

front. The slight pressure oscil-

a8
lations in the wave profile are the

result of the properties of the

- X \QS v The magnitudes of these pulsations
Co b '}\\\Qb& : determine the accuracy with which

5~¢J e 3

- )
S
By

; N ~the results obtained can be trusted.

. \ SN >

jﬁ' - f;{i'",:' 4‘\\:\\‘ Maximum intensity of the shock wave
L R I | , ~

thf:_;fmmff 77 W, is p/po % 2.1.  After the shock

wave breaks away from the reaction

wave the shock wave is attenuated,

FE A
v, A .
.f” T }:ﬁvl f;:/ﬂ!.L’ﬂl' N wave (troughs in the wave profile)
/' . 3 . f . ”\ *

r ‘4 —- SRRt . vt w7 M overtakes the shock wave,
R AN |l

" bution is shown by the dashed line in Figdre 2c. As will be seen, a basic

s 24

T ';'-‘j-‘l'h 3 BE LS RS T T

Ffigure 2d The initial temperature distri-

increase in the temperature will induce a reaction wave. Heating of the gas

[] . . [ . . If the equations contained terms
f : ’ .

by the shock wave is slight. The reaction wave therefore slows (Figure 2a).
M T—T T T

g -

l : ‘lk; ‘ q i el - conductivity, what would be formed

’f ~ would be a normally propagating

'g  flame. Let us point out that the

‘T““ velocity of flame propagation, so

J —%~V~ - 7 fN - . f’ the absence ¢f these terms has no

‘:u‘ F N Y N ] | tion of the shock wave.
Figure 3

Figure 2d shows the change in

gas velocity over time with respect to the walls,

The same reactioit tondition éan be realized for ka = 0.02. Figure 3

1

< \\‘\L A finite-difference scheme of Eq. (3.4).
b N ,

;
,} with the result that the rarefaction
{
!

iai : — i describing the diffusion and thermal

Rv effect on the formation and propaga-
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shows the distribution of the magnitudes a and p. Curves 1, 2, 3 and &
.correspond to the time values T = 7.44, 11.49, 16.65, 22.15.

The differerice between this case and the preceding one is that the shock
wave breaks away from the reaction wave much later in time and at greater
. distances from the hot wall (when T = 7.44 and § = 23.0 they still coincide), .
because a large mass of reacting gas takes part in the formation of the shock '
wave. This is why the maximum intensity of the shock wave is considerably

greater than in the preceding case, and is equal to 6.6,

Figures 4 a and b show the course

r10 . T
R RN SR N . . ,
’ ,Ir. A PR D I ‘p- ; of the reaction in the detonation
idl : _ —— mode. Here XB = 0,0107. This is
L 2 X k_J_ 1. £/ | . that critical gradient, A *, at which
| gz 2 7] 7] W 7 1
' e . detonation occurs. Corresponding to
éxm T —— , - ' | curves 1, 2, 3, 4, 5 and 6, obtained
i ‘ - —1 4 i as a result of the solution, are
| { 4 J 4 ')
§ .r - - . JAJ 1 time Values T = 55739 7.84, 9'0539
L » - LAl 11.23, 12.96, 14.76. Wave velocity
‘L A -//J /i-— V ' .
L2 ki X . can be computed from Figure 4, and
e 1 N} , i
) ' & ' equals 15007, 50579 5.809 5.299 '*.88’
72 JF w " k/4 A

Figures.h aand b : L,53 at the above-indicated time
intervals (the magnitude of the

velocity has been reduced to the speed of sound at 300°K),

On the other hand, from the formula for a heavy detonation [3]
D=VIFT—1C (k1)

where D is the detonation wave velocity, we obtain D = 4,95,

As will be seen, at time T = 14,76, the detonation wave enters the
Chapman-Jouguet mode. This can be confirmed by computing the detonation
wave velocity with respect to the products of the detonation, which latter
is equal to the local speed of sound. The computations were made at the
points marked by the asterisks in Figure 4b. The magnitude (D-w)/c (w is

the velocity of the reaction products at the particular point; c is the speed
of sound at this same point) equals 0.97, 1.06, 0.98, 0.53 (in ascending



order of £). The latter magnitude equates to the point where the reaction
has not yet begun. The deviations from unity of the magnitudes cited are

within the limits of accuracy for the determination of wave velocity,

The disparity between the wave velocities computed as a result of the

'computation, and as a result of using Eq.(4.1), can be explained, it would

appear, by the fact that the structure of a detonation wave is nonstationary.

This has been pointed out in [4-6], in which the unstable nature of one-
diﬁensional propagation of a detonation wave was investigated. We too
observed the pressure pulsations at the wave front noted in [5,6] (the

" results will not be included here). We should point out that in [5,6],

as distinguished from the case under consideration, the velocity of the

detonation wave, and the degree of supercompression, were fixed by external '

conditions, that is, by piston movement.

It should also be recalled that thebvery consideration of a plane deto-
nation wave is quite conditional because of its instability in the face of

spatial deformations. The detonation waves observed experimentally have a

complex, three-dimensional, nonstationary structure, Hence, the computation .

made in the foregoing can but illustrate the first stage in the formation
of a detonation wave that has not yet succeeded in forming its spatial

structure.

tion of the reaction in an incom-

pressible gas. Setting the deriva-

N ISR tive du/dx = 0 in Eq. (2.3), it is

u‘ ' i Y B ship determining the change in

Flgure 5 concentratlon, a, over time

T‘B""E‘[Aa;cf];. [ ]+" { [A(A&s i E‘[;(A—M)J}E

‘ ‘(c—-a(r-i). -a+a—-:.5. Ei [z] = § ‘2"’, a>o)"

i

U i e e e e e e b i e s e e ———

The results of the computations ‘made in arrivmg at the solutions of

10

'}1( . ;;:”j;: - Let us make a comparison between
o p— '{' .ﬂ the results obtained and the propaga-
J

iy easy to obtain the following relation-

(4.2)'
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Figure 6

Eq. (k.2) are shown in Figure 5, where curves 1, 2, 3 and 4 correspond to

moments in time T = 0.27, 0.42, 1.34, 6.75 (AB = 0.0107)

Figures 6 a, b and c enable us to follow the formation of the detona-
tion wave (h4 = 0.,01). The solutions for 1, 2, 3 and & correspond to moments
in time T = 1.55, 3.10, 7.75, 10.75. The initial distribution of all magni-
tudes is quite flat, but then, because of the formation of the wave, the
gradient becomes_increasingly steeper. Here the wave is formed later than

in the preceding case.
If now there is an even greater reduction in the slope of the tempera-

ture profile, beginning at XZ* = 0.003, the reaction takes place throughouf

. the vessel; that is we have a thermal explosion mode.

Let us point out that fhe values of the critical gradients Rl* and
XZ* are functions of vessel length. In fact, if the length of the vessel
is less than the distance over which the Chapman-Jouguet mode is arrived at,

11



the mode in which the reaction occurs can be classified as a thermal explosion.

Figure 7 shows the solution of

&‘.’ ¢ [ { — ‘
2 y )‘5 = 0.001, with curves 1 and 2
i“ /z__/_-———" plotted for T = 0.18 and 0.34. Com-
’ 3 L g plete burn-out of the combustible
" ? ? - - i component occurs at T = 0.47. Pres-
g , : ; sure throughout the vessel is raised
o 7 T almost uniformly at 2P . This is

readily obtainable from the system
of Eq. (2.1) if the x derivatives

Figure 7

are set equal to zero.

5. An explanation of the nature of knocking in internal combustion

- engines, The process involved in burning up the fuel mixture in internal
combustion engines can be accompanied by an explosion. This phenomenon has
come to be called knocking. Today it is accepted that this phenomenon can
be explained from the point of view of kinetic concepts. At the same time,
the conclusions arrived at by the various authors are extremely contradic-
tory and do not provide anywhere near the explanations that should be availf
able from accumulated experimental material. Monographs [7,8] contain '
detailed discussions of existing views on this question. We should alsoc

point out reference [9], a recent paper.

The purely thermal explanation of this phenomehon suggested in our
paper is based on the possibility of the occurrence of a detonation wave as
a result of the nonuniform heating of the reaction-capable gas mixture.
The formation of the detonation wave can explain the reason why high thermal
and mechanical overloading of the engine can be observed during knocking.
'For example, when XB = 0.0107, the intemsity of the forming detonation
wave is equal to ~ 6. In accordance with the formula for the reflection
" of a detonation wave from a solid wall [10], the pressure beyond the refiected

wave is equal to ~'15Po.

The formatioﬁ of detonation waves during knocking were observed in the

experiments. They are described itj g8l.

e
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